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Abstract

The mathematical model in the form of food web consisting of
two logistic preys and a predator is taken from [1]. Modified Leslie-Gower
type dynamics is considered for the predator [1]. The model is analyzed
mathematically [1]. Analysis of nonzero positive equilibrium gives
conditions for persistence [1]. The existence of Hopf bifurcation has been
observed in range of biological feasible values for the key parameters.
This paper is the extended part of published research paper [1].
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Introduction

It is known that by the study of various research papers [1-22] that
the nature is nonlinear and is observed multi rich dynamics. In the research
paper [1] for the given biological food system global and local behaviour
has been investigated under the biological feasible range of parameters. In
this paper it is observed existence of hopf bifurcation analytical and
numerical.
Review of Literature

A lot of research work has been carried out on ecological systems
comprising of food chains and food web of variable lengths [01-22]. The
underlying nonlinear equations have complex dynamical behavior: hopf
bifurcation, quasi-periodic behavior. The chaos is not frequently observed
and the models reveal quasi periodic nature of the solution. Due to indirect
competition between two predator species, one or more species may
undergo extinction.
Aim of the Study

We have to study quasiperiodic, hopf bifurcation solutions of the
nonlinear model [1].
The Mathematical Model

The transformed non-dimensional form of the biological food web
[1] is given

dy Wy

d—::yl(l-y1 : )=y, f,(¥,.Y,.¥,)

l+w,y, +w,y,

dyg WsY,

o yo[(L-y,)w, - 1=y, 5,05, ¥, ¥5) ®

T+w,y, +w,y,

w

3 20 7 w

7

)=w,y, (- )=V, (0 Y, Yy)

(-
dt L+wy, +wyy, ltaw,y +a,wy,

w,>0,i=1,2,34,586,7; y,20,i=12,3;a,#a,.

Mathematical Analysis

The system can be splitted into two disconnected
Kolmogorov food sub webs [1]
Lemma 1

Consider the domain D, ={(y,,y,):0<y, <y, <1,0<y.}
and D, ={(y,,y,):0<vy,< YZ <1,0< y,}, he subwebs of (1) in [1]

is Kolmogorov in the domain D1 and domain D2 under the following
conditions:
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w,/Q+aw,y) <l<w, /(1+a,w,y)<w, (2)

w,/Q+a,w,y,) <l<w,/(Q+a,w,y,)<w,respectively (3)
The proof of the theorem given for existence of positive equilibrium point and stability is established in [1]
Theorem
The system (1) has positive equilibrium point (§,, ¥,, ¥,) under (2) and (3) provided one of the following is
satisfied [1]:
W, W, &
W3(W1W4_W5)<—.5:W -1 (4)

o, !

EW
w,(w, —w, w,) < (5)
24 1
Theorem
The positive equilibrium point (y,,Y¥,,¥,) is locally asymptotically stable provided the following are

satisfied simultaneously [1]:

A
2(w,w,e + WwW,x,)+—>A+2a,W,W,W, (6)

W,

3W5

w,(w,e + a,Ww,w,w,) + A > A+ o, W, W W, (7)

W, W,
e=w,-1>0;, A=a,WW,W, +a,W,W,
The following theorem [1] gives the conditions for the global stability of positive nonzero equilibrium point.
Theorem
The positive equilibrium point (y,,¥,,¥,) is globally asymptotically stable provided the following are
satisfied[1]:
A=L+wy +wy,-w)>0; B=(L+w,§ +wy,-w,)>0. w;m2 + w:wf <4mw,AB ;

Hopf’s Analysis of the Food Web
Assumey, = y, +u,y, =Y, +V,y, =9y, +w, where u,vandw small perturbations are. The

variational matrix about (¥,,¥,, ¥,) is given by

’V A WIWZylyS W1W39193 lel —‘
‘_ yl + n n 2 n - ‘
(au a, alﬂ ‘ Q+w,y, +w,9,) Q+w,y, +w,9,) (1+W2y1+w3y2)‘
| ‘ ‘ W2W5y293 W5W393 W5y2 ‘
|a21 a4, 8y ‘:\ . ¥, (-w, + A A 2) - . |
Q+w,y, +w,y,) Q+w,y, +w,y,) Q+w,y, +w,9,)
La31 s assJ ‘ a0 N ‘
‘ aW,W,WeYsY, W W W Y3,y 0 ‘
L (1+(,‘51W2)71+012W3)72)2 (l+o{1W2)71+012W3\]2)2 J
The characteristic equation of variational matrix is
2’+aA’+al+a,=0 ©)

where a, =-(a,, +a,,);a, =(a,,a,, -a,,a,, —a,,a,, - a,,a,);

a, = (a13a31a22 T a,,8,,8, —8a,8,,8;, —8a,,a,,3a, ).

Leta,, =-m, ;a,, =-m,;a,=-m,;a, =-m,, then

11722 2 23
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a,=m +m,>0;a, =(m1m2 -a,a,, +m,a, + maagl) >0;

a,=(m,a,m +m,a,m +a,ma,+a,a,a,)>0.
Applying Routh’s criteria a, > 0 provided (a, +a, ) <0 ,thatis, a,, <0, a,,<0.Alsoa, >0,a, >0 and
a,a, -a, > 0. Therefore positive nonzero equilibrium point is locally asymptotically stable. None of the roots of

equation (9) is zero asa , # 0 . Substituting A =Ziw into (19), the real and imaginary partitions of the results

lead to the following conditions: (i) o =+ «/al (i) a, @ ‘- a

2

(i) and (ii) and (19) results that a pair of purely imaginary roots  + i w/al and areal root“ - a "

Transversality condition: - Let the characteristic equationbesuch that it contains a real root, say c, , and a pair of
purely imaginary roots 4, = Ao Eidy:

(A -2 )A-A)A -c,) = 0.

2c =0 (10)

‘ 2 ‘
ora (24, +c)a% (| v2aie)- |0, e,
Comparing the coefficients of (15) and (16) gives

a,(-a,-22 )=-a,+21 (24, +a,)" (11

Differentiating (11) with respect to bifurcation parameterw  , and substitutingw , = w: and 4 1(W7) = 0 vyields

[112]:
oa oa oa
. (ao L a, 0o 2
oA, ow, ow, ow,
- . (12)
ow, T 2(a, +a,)
oa, oa, oa, om, 2
-a, -a, ={ (a12a21-2m1m2-m2-m3a31)
ow, ow, ow, ow,
om, B om,
+ (a12a21 - 2m1m2 -my - m4a32) + (azlaaz - a31m1)
ow, ow, 13)
om, a, a,
+ (a8, -a;,m,) + (a;,m, +a,a,)+ (a;,m; +a,a,)
ow, 7 7
0ag, as, .
+a_(alzm4'm1m3)+ (a;m, -m,m,)};

7 7

oy, w,w, 0y, w, 0y, ow,
= ; = —  — = > (w,w,w, +w,w_) (14)

ow, A ow, A ow, A
om, _ ylw;w2 [ w,w,w +wws\(293_I1(SW4\—|+W1c1 C o oas
ow, I U A A JL A ”
om, _ ylw;w5 [ w,w,w erws\(zy3_I1(SW4\—|+ch2 C g
ow, I, H A A JL A ”

( wow, ) ( wow, )
Wherec1=|1-y3 21 z \>O,c2=|w4-y3 25 > >0

\ ) \ )
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ow, 17 | A L AL LA )L A JJ
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= —9. + + -y
ow, 1P AT Al LA U A 3JJ
08, _ 2w, w w, ¥, [ . (Sw,l, ey \+ww ” (1,6 w, ey ﬂ,

3 375 273 2 173
ow, s [ ) - J]
19)
oa 20 wow w ¥, [ (Sw,l 3 (16w V1
32: 2 736 3y3 WSWSL 42_a293J+WW2WL2 A_alst

ow, I,A A A
It is observed that
o

L = 0 .
o w, w—w®

Thus the transversality condition is satisfied. So a The nonzero positive equilibrium point

family of periodic solutions bifurcating from E , in the

neighborhood ofw ; exists, that is, the Hopf

bifurcation will occur whenw, e (w, - &, w +6).

Numerical Simulation

Numerical simulations of the underlying
non-linear system are carried out. The numerical
values for various parameters are selected
according to the mathematical restrictions
obtained from the Kolmogorov analysis. These
ensure that the parameters take biologically
relevant values only.
Numerical results for hopf analysis with respect

to w, is shown for the following data:

(0.3549, 0.5557, 0.4200) is asymptotically

stable asa,a,-a,=0.0671> 0 . The analysis
has established the existence of Hopf bifurcation. To

get the value of w, where it occurs, the values of

expression d1d o - Az are computed as function of

w, and are shown in the table 1. The Hopf

bifurcation occurs in the neighborhood ofw, =1.35 .
The variational matrix at the Hopf bifurcation point
w, =1.35 isgiven as

[ -0.0735 0.1040 -0.3179 ]
W1:3.3,W2:1.2,W3:1.3,W4:l.l,W5:2.5, | |
| 0.1836 -0.2719 -0.6081|
w,=1.0,w, =16,a,=0.9,a,=0.3 20
: PTG IR (20) | 01569  0.0567 0 |
Table 1: Values of @1d¢0 - @2 vs w,
w 1.40 1.38 1.37 1.36 1.35 1.34 1.29
7
0.0054 0.0029 0.0019 9.36e-04 1.14e-04 -5.939e-04 -0.0026
didg - dj

The eigenvalues of the above variational matrix are -0.0003 + 0.2916i ,

-0.0003 -0 .2916i, and -0.3448. The

eigenvectors corresponding to eigenvectors at the hopf bifurcation pointw , =1.35 are given as

0.5169 + 0.2759i
0.6826
-0.1488 + 0.4107i

0.5169 - 0.27509i
0.6826
-0.1488 - 0.4107i
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Transversality condition at the hopf bifurcation point W, =1.35 is computed as

oa, oa, oa,
) (a, +a, -
04, . ow, ow, oOw,
2
ow, v 2(a, +a,)

-15.6933 # 0.0.

The transition in the global behavior in phase space is shown in fig 1. The fig. 2 show the three time series for w, =

1.29. The equilibrium point is stable at w_, = 1.40 [1], while there is a limit cycle for w_ = 1.29.

0.5
]
>
045 @ \
0.4 Z
08
03
2 07 01 02 03
(b)w, =1.37

; : 0.3
@ o 0y 0.2 2 01 o1 2 0 01 yp 02
(d)w, =135 (e)w,=1.34 (f) w,=1.29
Fig. 1. Different phase plots with varying values of w,
Fig. 2. Time series for w, =1.29
Conclusion Asian Resonance Journal, P: ISSN No. 0976-
Further, it is observed that quasi-periodic 8602 RNI No.UPENG/2012/42622 , E: ISSN No.

behavior is obtained instead of limit cycle due to
relaxation of the constraint considered.The
existence of Hopf bifurcation analysis with
varying key parameter is investigated numerically
and analytically. Numerical integration of the
food-web non-linear system is carried out under
the Kolmogorov biologically feasible conditions.
The limit cycle attractor is found.
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